|
A secure cryptoprocessor is a dedicated computer on a chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained. The purpose of a secure cryptoprocessor is to act as the keystone of a security sub-system, eliminating the need to protect the rest of the sub-system with physical security measures. ==Examples== Smartcards are probably the most widely deployed form of secure cryptoprocessor, although more complex and versatile secure cryptoprocessors are widely deployed in systems such as Automated teller machines, TV set-top boxes, military applications, and high-security portable communication equipment. Some secure cryptoprocessors can even run general-purpose operating systems such as Linux inside their security boundary. Cryptoprocessors input program instructions in encrypted form, decrypt the instructions to plain instructions which are then executed within the same cryptoprocessor chip where the decrypted instructions are inaccessibly stored. By never revealing the decrypted program instructions, the cryptoprocessor prevents tampering of programs by technicians who may have legitimate access to the sub-system data bus. This is known as bus encryption. Data processed by a cryptoprocessor is also frequently encrypted. The Trusted Platform Module (TPM) is an implementation of a secure cryptoprocessor that brings the notion of trusted computing to ordinary PCs by enabling a secure environment. While envisioned by some as being a method to make it much harder to illegally copy copyrighted software, present implementations tend to focus more on providing a tamper-proof boot environment and persistent and volatile storage encryption. Security Chips for embedded systems are also available that provide the same level of physical protection for keys and other secret material as a smartcard processor or trusted platform module but in a smaller, less complex and less expensive package. They are often referred to as cryptographic authentication devices and are used to authenticate peripherals, accessories and/or consumables. Like Trusted Platform Modules, they are usually turnkey integrated circuits intended to be embedded in a system, usually soldered to a PC board. Hardware Security Modules contain one or more cryptoprocessors. These devices are high grade secure cryptoprocessors used with Enterprise servers. A hardware security module can have multiple levels of physical security with a single-chip cryptoprocessor as its most secure component. The cryptoprocessor does not reveal keys or executable instructions on a bus, except in encrypted form, and zeros keys by attempts at probing or scanning. The crypto chip(s) may also be potted in the hardware security module with other processors and memory chips that store and process encrypted data. Any attempt to remove the potting will cause the keys in the crypto chip to be zeroed. A hardware security module may also be part of a computer (for example an ATM) that operates inside a locked safe to deter theft, substitution, and tampering. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Secure cryptoprocessor」の詳細全文を読む スポンサード リンク
|